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1 Brief Background Description of Supercomputing
Activities

1.1 Hardware and Software Platforms

Today, the data deluge is impacting scientists in both research fields and industrial
applications in a very profound way. In order to address this challenge, we establish a
high performance computational (HPC) cluster in 2016.

The HPC cluster is equipped with more than 300 cores, 3.3 TB memory and 144
TB storage with Lustre (parallel) file system. The peak performance of the whole HPC
cluster is 13 TFlops. Our HPC cluster consists of a number of batch nodes and a small
number of special purpose nodes.

For the batch nodes we differentiate between so-called thin nodes, fat nodes, and
GPU nodes. Ten thin nodes constitute the majority of the available batch nodes. GPU
nodes use GPUs to accelerate the computations. Fat nodes have more physical cores
(96) and larger memory (2 TB) than the thin nodes, which is especially suitable for
analyzing large scale of sequencing data. Special node is so-called service node. The
service node provides login service and administrates the whole HPC cluster. Every
computing node has a Mellanox 56 Gb/s InfiniBand adapter providing 4 × FDR
(Fourteen Data Rate) resulting in 56 Gbit/s inter-node bandwidth, with an inter-island
latency of 3 µs. All nodes within HPC cluster connected by 1000 Mb interconnect.
Each node runs under the same operating system (a Linux distribution compatible with
Red Hat Enterprise Linux). The HPC cluster also set up with a parallel computational
environment.

The detailed information of the hardware and software configuration of our HPC
cluster is listed in Figure 1 and Figure 2, respectively.
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Figure 1: Summary of hardware configuration of our HPC cluster
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Figure 2: Summary of software configuration of our HPC cluster

1.2 Courses, Training, and Interest Groups

Our supercomputing-related trainings are carried out by the joint education program
between Institute of Life Sciences and Chien-Shiung Wu College (Honors) in Southeast
University.

1.2.1 Institute of Life Sciences

Institute of Life Sciences is established as a direct department of Southeast University
to commit to a high level of scientific research. Institute of Life Sciences contains “Key
Laboratory of Developmental Genes and Human Diseases, Ministry of Education”,
Biology doctoral research Centre, first level subject master’s degree of Biology and
second level subject doctoral degree of Genetics. The Genetics subject is especially
appraised as Professor job-setting subjects and the “Tenth Five-Year”, “Eleventh Five-
Year” key disciplines of Colleges and Universities in Jiangsu Province by Cheung Kong
Scholars of Ministry of Education.
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Now the Key Laboratory of Developmental Genes and Human Diseases under
Ministry of Education has abundant resource of faculty, including a professor specially
invited by Cheung Kong Scholars Program of Ministry of Education, a 973 Chief
Scientist, four laureates of China National Funds for Distinguished Young Scientists
, 2 awardees of the New Century National Hundred, Thousand and Ten Thousand
Talent Project, two professors who receive subsidies from the state council, two of the
first batch of young scientific and technological leading talents of Jiangsu Province 333
High-level Personnel Training Project, four excellent youth teachers of Blue Project.
In recent years, it obtained construction funds up to more than 20 million RMB from
985 Program and 211 Program.

The laboratory has four stable research fields, which includes the study of develop-
ment related gene function, the molecular mechanism and therapy of nerve development
related diseases. It gained three National Natural Science Funds for Distinguished
Young Scholar, more than 20 National Natural Science Foundation of China, a National
973 Foundation including 3 programs, a fund from NIH, a Science Scholarship for The
Excellent Youth Scholars of Ministry of Education of China and several provincial
research funding. Institute of Life Sciences mainly focuses on high-level scientific
research and publishes a number of outstanding scientific papers in life sciences and
medical field.

1.2.2 Chien-Shiung Wu College (Honors)

Chien-Shiung Wu College (Honors), named after the world-renowned physicist and
also alumna of Southeast University, Madam Chien-Shiung Wu, is the honors college
of Southeast University, which provides elite education for outstanding students.The
future major of the students cover all engineering majors in Southeast University.
Chien-Shiung Wu College provides complete 4-year customize-tailored program includ-
ing intensive fundamental curriculum in first two years, which is tougher and more
challenging. The college provides more training on autonomous study, research-led
study, integrated practice, teamwork, communication, together with more emphasis on
leadership, global view and international experiences.

Our HPC cluster provides us with the best practical environment for students.
We mainly train the students with basic principle of HPC and practical skills. We
are teaching the students with a series of courses of Linux, Shell, OpenACC, MPI,
CUDA and so on, by which the students can fast grasp the working principle of
parallel computing. Subsequent practice on HPC enables the students to increase their
capability to resolve practical problems in research.

We encourage the students to do parallel computing in their projects. Especially,
at present, the majority of bioinformatic software and programs are designed in a way
of sequential program, which usually requires more running time. Parallelizing these
sequential programs will enhance analytic efficiency, which is an important orientation
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we spend efforts on. The students modify the previous program code and achieve
parallelization for many sequential program.

For the excellent students who have strong interests in supercomputing, we establish
an interest group and provide them with more training programs. In order to broaden
the student horizon, we invite the experts from Tianhe-2 to introduce the latest
advance of supercomputing technologies. Even we just start supercomputing training,
we believe supercomputing is becoming the most powerful tool to accelerate scientific
research and has a broad industrial application. Learning supercomputing will enable
the students to have more competitive capability for their future either in research or
in industry.

1.3 Research and Applications

Our HPC cluster is the main equipment of our Bioinformatics Systems Biology Plat-
form, which is a core facility that provides bioinformatic support to the Institute of Life
Sciences, Southeast University. Our research covers a wide range of biological research
fields requiring cutting edge computational techniques such as genomics, proteomics,
structure biology and theoretical biology. Our purpose is to assist researchers in the
processing, organisation and analysis of biological data, providing insight and aiding
scientific discovery for academic partners and industrial collaborators by using HPC.

Data on biological systems is being generated at an unprecedented speed by
new high-throughput molecular profiling techniques. Consequently, we are rapidly
accumulating information about all aspects of cell function, such as DNA and protein
sequences, gene expression levels and its regulations, epigenetic modifications, post-
translational modifications, protein-protein interactions, metabolic pathways, protein
complexes etc. No doubt, in Big Data Era, bioinformatics and systems biology are
rapidly extending their applications in comprehensive biomedical research fields.

Today medicine is now undergoing a transformation of the nature of healthcare from
reactive to preventive. The change is rooted in new sciences including computer science.
This change will be catalyzed by supercomputing that will trigger the emergence of
precision medicine – a medicine that focuses on the integrated diagnosis, treatment
and prevention of disease in individual patients. And big data of healthcare, which has
revolutionary changed concept of health for everyone. In the not far future, everyone
will be benefit from big data of healthcare. Southeast University and her collaborators
are participating in big data healthcare project in Jiangbei Industry Zone in Nanjing.
Supercomputing is necessary for deep learning for such big data, such as genomic and
other biomedical data from million population in Nanjing, or Jiangsu province, even
big area. Therefore, there are many opportunities for basic and applied research when
supercomputing is applied in Southeast University.

A central focus of our research and application is to use supercomputing and
bioinformatic tools to interpret the information produced by such technologies and
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identify biologically and medical significance in research, medical practice and health-
care management. These fields, we are working on parallelizing the previous sequential
program and empowering our analytic capability to face up to the challenge from the
era of Big Data and Precision Medicine.

1.4 Key Achievements on Supercomputing Research

The most exciting achievements on supercomputing is that Southeast University team
achieve the first class prize in ASC2017 and ASC2018. Through competition with
huge amount of team worldwide, we finally entered in final competition. We achieve
a big honor and our University also propaganda our achievements. Since then, more
students want to know and learn supercomputering.

Figure 3: Wining first class prize in ASC 18

Another achievement in research is that we are are carrying two projects in collab-
oration with BGI: We are using deep learning to analyze omics data such as whole
genome sequencing data, whole genome association study data, clinical data, metage-
nomic data, daily diet information and daily sport activity from thousand individuals
to understand the most important reason of obesity for individual. Based on this
better understanding, everyone can make a personalized design for better control his
or her weight to achieve a better healthy condition. In other project, we are combing
genomic data with portrait photo and using deep learning to reveal the relationship
between genomic DNA sequence with appearance (facial features). Based on training
the model, we hope to use genomic information from a given individual to build up his
or her appearance.
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Through these interesting and useful projects, the students can obtain more practical
skills in supercomputering and deep learning.

2 Introduction of the Team

2.1 Brief description of the Team Setup

Our supercomputing-related trainings are carried out by Chien-Shiung Wu College
(Honors) college, School of Artificial Intelligence, School of Computer Science and
School of Information in Southeast University.

Our HPC cluster provides us with the best practical environment for students.
We mainly train the students with basic principle of HPC and practical skills. We
are teaching the students with a series of courses of Linux, Shell, OpenACC, MPI,
CUDA and so on, by which the students can fast grasp the working principle of
parallel computing. Subsequent practice on HPC enables the students to increase
their capability to resolve practical problems in research. We encourage the students
to do parallel computing in their projects. Especially, at present, the majority of
bioinformatic software and programs are designed in a way of sequential program,
which usually requires more running time. Parallelizing these sequential programs
will enhance analytic efficiency, which is an important orientation we spend efforts
on. The students modify the previous program code and achieve parallelization for
many sequential program. For the excellent students who have strong interests in
supercomputing, we establish an interest group and provide them with more training
programs. Even we just start supercomputing training, we believe supercomputing
is becoming the most powerful tool to accelerate scientific research and has a broad
industrial application. Learning supercomputing will enable the students to have more
competitive capability for their future either in research or in industry.

2.2 Introduction of Team Members

Team advisor:Jian Li

Professor in School of Life Sciences and Technologies, Southeast Uni-
versity, male, 43 years.

I am in charge of bioinformatics platform and HPC. Prior to join-
ing Southeast University in 2014, I was post-doctoral fellow and, later,
principle investigator in Department of Biomedicine, Aarhus University
(Denmark) from 2008 to 2014. I received bachelor degree of medicine
from School of Clinical Medicine, Southeast University in 2001 and PhD
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at Human Genetics Institute, University of Aarhus in 2008. My research fields include
Bioinformatics Systems of Biology and Genomics.

For the Human Genome Project (HGP), scientists from six countries spent 3 bil-
lion US dollars and more than ten years to complete sequencing one human genome.
Nowadays, one can sequence a human genome within 24 hours with a cost of less than
1000 US dollars. It means, we are accumulating more and more genomic data at an
unprecedented speed. Consequently, we have to evolve new capability to handle such
huge data. Supercomputer is a good tool to achieve such goal. In this context, we
decided to purchase a high-performance computational cluster to assist our research.
No doubt, in Big Data Era, bioinformatics and genomics assisted by supercomputing
are rapidly extending their applications in almost every biomedical research field. I am
developing and applying bioinformatics tools with HPC to advance our understanding
of the mechanisms of cancer and autism. To obtain novel clue from study such com-
plex diseases, usually we need to analyze a large scale of data from a large cohort of
patients generated by high throughput technologies. Supercomputer makes analyze
such huge data possible. Parallel computational programs further make such analysis
faster and more effective. Now, we are using our HPC to carry out the following
projects: development of novel algorithms to understand tumorigenesis of skin tumors;
meta-analysis of autism associated genes; deepening understands of the human genome;
gene networks in cancers; novel molecule drug development.

Captain:Yifan Huang

I am Huang Yifan, an undergraduate student of Computer Science and
Engineering College, Southeast University, major in Artificial Intelligence.
I am now interested in NLP, an important area in Artificial Intelligence.
I’m now conducting a Knowledge Graph based project called Entity
Linking, which aims to link entities to knowledge graph.

From my perspective, HPC is a significant element in future develop-
ment of AI and deep learning and I would like to do some research into

combine them together.

Member:Haorui Li

A junior undergraduate student of Chien-Shiung Wu College(Honors),
Southeast University, male, 22 years, majoring in computer science.

I am not a so-called “traditional” computer-majored student because
what I’ve learned is more like an algorithm engineer, which can be seen
in my personal achievement as follows. I’ve got the Outstanding Winner
in Computer Design Competition for Chinese College Students(4C) in
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Jiangsu area using a high precision parallel computing weather forecast system; the
Meritorious Winner in MCM 2020 where I am in charge of programming, and finally,
give correct results by a dynamic programming system for route planning.

During the extra-curricular time, I am in charge of my University’s auto-reply robot
for searching school information databases which brings me precious experience on
load balance, remote server, and highly concurrent because it has to work great under
a good number of visit.

The wide range of project experience makes me fit in ASC competition easily. From
my perspective, ASC is not only a Computer Challenge but a comprehensive Challenge
of many subjects.

Member:Chengrui Gao

Gao Chengrui, a student in the school of computer science, Southeast
University, major in artificial intelligence, male, 19 years old.

I am interested in computer vision and high performance computing.
I have participated in a object detection and object tracking project in
SEU and got excellent final evaluation. Nowadays, I research on the
application of label distribution learning, especially for object count-
ing. I think that high performance computing is necessary in artificial

intelligence, astronomy and other basic science categories. With better utilization
of high-performance computers, the research efficiency in these fields could be improved.

Member:Chaoyang Wang

I amWang Chaoyang, male. I am 20 years old, majoring in information
engineering. In September 2018, I entered the southeast university.

I have studied computer organization and structure, microcomputer
interface program, c + +, digital image processing, has won the H prize
in the Mathematical Contest In Modeling.

In my opinion, supercomputer is a competition related to performance
optimization and big data computing. Both of these aspects are of great

interest to me. In my opinion, big data computing and processing applications are the
hot spots for future development. I hope to continue the research on big data and
computing clusters in my graduate study.

Member:Jiangtao Wang

Studying at Chien-Shiung Wu College (Honors)Southeast University, majoring in
cyber security, aged 20.
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At present, I have learned some knowledge about the basic computer,
C, data structure, digital logic circuit, computer architecture, and have a
strong interest in computers. In the network security major, for cryptology,
channel coding theory has a certain interest, a deep understanding of the
importance of computational power for the decryption process, therefore,
for the super-calculation has a strong interest.

In my opinion, the significance of the computer field lies not only in
the wide application of computers, but also in the possibility of computer architecture
in a new world, our future fields are by no means a problem of using computers, and
more importantly, the development of computers may open new doors for more fields.
Academician Zhang Jiping said that the computer field may be the birth of a new
mathematics. I think more than that, new science may be born in the computer world.
Hope to see and participate in the development of computers and supercomputing.

Figure 4: Group photo

3 Design of HPC system
We take the theoretical floating-point operation peak of the computing cluster as the
objective function and the power limit as our constraint condition. We hope to get the
peak of theoretical floating-point operation under the power constraint of 3000W.

Below we present cluster design on software and hardware configuration and
interconnection. On top of that, we analyzed the energy consumption, performance
evaluation, and the pros and cons of the cluster.

3.1 Design Description

Our proposed system is based on the Inspur NF5280M5 server following instructions
and recommendations. The components and power consumption estimation listed in
the table below.
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3.1.1 Hardware Design

Figure 5: Hardware configuration of designed HPC system
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3.1.2 Software Design

Figure 6: Software configuration of designed HPC system

3.1.3 System Layout

The system layout is as below, black line indicates Gigabit Ethernet running at 1Gbps
(for each node one port is used, the other is either as alternative or can be binding for
quick speed), green line indicated FDR-InfiniBand at 100Gbps for parallel applications’
best performance. The end users and system administrators can connect to the nodes
with Ethernet connection.

Figure 7: System Layout
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3.2 Performance Optimization

Within the power limitation of 3000 Watts, there are usually 4 nodes each with two
V100 GPU that can be used. Our strategy is that by reducing the frequency of V100
GPU, the ratio of performance and consumption rises. So, we can add one extra node
with two V100 GPU. It can bring an improvement of performance.

Although our theoretical power consumption is nearly 4200w. However, according
to the previous experience, the computing performance of the computing cluster cannot
be given full play. The actual power consumption of this design will be less than
3000W.

We notice that the CPU is used much more frequently than the GPU in actual
computing. Therefore, we assume to increase the number of CPU, but there is a big
difference between the floating-point computing power of CPU and GPU.

Item Peak Performance/TFLOPS Efficiency/(GFLOPS/W)

CPUx2(280W) 32×2.6GHz×14×2=2.328 8.31
GPUx2(500W) 7×2=14 28

Table 1: Efficiency of CPU and GPU

The advantage of our strategy is clearly that it has greater efficiency than regular
systems. However, since we reduce the max frequency of GPU, it can’t have the best
performance, which shows a low cost-performance ratio.

So we will try the following strategies 1) frequency-reduced GPU only, 2) CPU+GPU
to find out the best performance within limit of 3000W.

3.3 Analysis and Discussion

The advantage of our HPC system are as follows:

i According to our existing experience, the actual power consumption of this com-
puting cluster is below 3000w.But the theoretical floating-point operation peak of
the cluster can reach 81.64TFLOPS. This is the cluster design method in which
our objective function achieves the maximum under the existing conditions.

ii We use node 1 as the management node, but it still acts as both a compute node
and a storage node. Data and files are transferred between nodes through NFS.
This design maximizes the computational performance of the cluster.

iii Although GPU has good computing performance, some software runs only on CPU.
The cluster design takes into account the requirements of CPU and GPU, and the
overall performance is superior.
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Beside of the advantages, there are several disadvantages:

i We only take the peak value of floating-point operation as the optimization target,
but ignore the actual scheduling of GPU and CPU in the process of specific problems.
This will be further advanced in our follow-up study.

ii We have two GPU in each node. The performance of two GPU is lower than
expected due to some problems in task scheduling as well as other sides.

4 HPL and HPCG

4.1 Environment Description

In this part, We will give a clear description of our hardware and software configuration,
including CPU and memory configuration, operating system, math library, etc.

4.1.1 Hardware

Item Configuration

CPU Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz*2
Memory 128G

Table 2: Hardware configuration

4.1.2 Software

Item Configuration

OS CentOS 7.8
Compiler Intel® Parallel Studio XE 2020
Math Library Intel® Math Kernel Library 2021.1
MPI Intel® MPI Library 2021.1
HPL HPL-2.3
HPCG HPCG-3.1

Table 3: Software configuration

4.2 HPL Optimization

In this part, We are going to explain the process of HPL optimization from several
aspects.
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4.2.1 HPL Algorithm

Since our target is to optimize HPL performance, it is crucial to dig in the specific
algorithm of HPL, with the help of which we are able to have a deeper understanding
of the optimization process and of course, get a better performance.

HPL is a software package that solves a (random) dense linear system Ax = b in
double precision arithmetic on distributed-memory computers. It can thus be regarded
as a portable as well as freely available implementation of the High Performance
Computing Linpack Benchmark.

Firstly, HPL compute the LU factorization of matrix A:

A = (A )11A12A21A22 = (L )11 0L21L22 · (U )11 U120U22 = LU (1)

among which, Aij and Lij are already known, Uij are unknown(i, j = 1, 2). From the
equation above we can obtain:

A11 = L11U11 (2)

L11 and U11 can be computed through row partial pivoting. Thus L21 and U12 can be
computed through the equation below:

L21 = A21U
−1
11 U12 = A12L

−1
11 (3)

Beside, we can also obtain:

A22 − L21U12 = L22U22 (4)

As can be seen from the equations above, the calculate of HPL is matrix related
computation to a large scale, as a result of which, the optimization process is mainly
based on the improvement of matrix computation.

4.2.2 Configuration Parameters

The configuration parameters in hpl.dat is of great significance to the performance
result. Therefore, We carried out a great amount of experiments to find the most
suitable parameters according to my hardware configuration.

Partition size NB To improve the overall performance, HPL partitions the matrix
and then solve it. Therefore, the size of partition matrix plays an important role in the
optimization of performance. Considering of this, We carried out several experiments
to find the best partition size.

We did a search first——by a range from 23 to 210. To avoid the influence of other
parameters, I set them as fixed values. I set problem size N as 113511, by which HPL
is about to use 75% of my system’s whole memory. The corresponding result can be
seen from figure 8.
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Figure 8: Performance of different NB

It is noticeable that the Gflops increased dramatically since 23 to 27, after which, it
reached a peak at 28. Then, there is a steady decrease till 210. Therefore, we selected
NB = 256 as the partition size.

Problem size N After deciding the partition size NB, we put emphasis on the
problem size. In order to find out the best performance of my system, the largest
problem size fitting in memory is what we should aim for.

The amount of memory used by HPL is essentially the size of the coefficient matrix.
we definitely need to leave some memory for the OS as well as for other things. As a
rule of thumb, 75% of the total amount of memory is a good guess. If the problem
size picked is too large, swapping will occur, and the performance will drop; if the size
picked is too small, HPL is not able to take advantage of our cluster’s whole memory,
leading a shrunk performance.

To find the most appropriate size N, we calculated the rough size according to the
equation below, which is derived from the rule of thumb.

N =

√
α · TotalMemorySize

sizeof(double)
(5)

TotalMemorySize is the total memory of our cluster, which is 128 GB. The size of
double equals to 8 bytes. α represents the ratio HPL used of total memory.

19



Considering the rule, I took α = 0.70, 0.75, 0.80 perspective, the corresponding sizes
are 109663, 113511 and 117243. To compare the difference of these sizes, I product the
following experiment with different NB sizes.

Figure 9: Performance of different N

As the figure shows, size 113511 has the best performance, which proves the rule
mentioned before. Although size 109663 exceeds 113511 at a NB size of 27, 113511
still performs best from a general view. Therefore, we can decide 113511 as the most
appropriate size N.

Process grids P × Q Referring to some existing researches, the process grid de-
pends on the physical interconnection network. In other words, P and Q should be
approximately equal, with Q slightly larger than P. However, If a simple Ethernet
network is used, there is only one wire through which all the messages are exchanged.
On such a network, the performance of HPL is strongly limited and very flat process
grids are likely to be the best choices.

To test and verify these rules, we also conducted an elaborate experiment, with
fixed N of 113511 and NB of 256. Considering our cluster has 36 logical CPU, we do
the test separately on 5 different P×Q: 3×12, 4×9, 6×6, 9×4 and 12×3.
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Figure 10: Performance of different P×Q

This experiment shows that the rules are valid: P×Q=4×9 has the best performance,
followed by P×Q=6×6. With a smaller P and larger Q, the HPL’s performance go
through a slight decrease. Therefore, we choose P×Q=4×9 as the final process grids.

4.3 HPCG Optimization

HPCG, which stands for High Performance Conjugate Gradient, is a stand-alone
code that measures the performance of basic operations. It’s driven by multigrid
preconditioned CG algorithm that exercises the key kernels on a nested set of coarse
grids. Below we will introduce the optimization of HPCG based on experiments from
two aspects.

4.3.1 Testing Time

HPCG can be run in just a few minutes from start to finish. However, official runs
must be at least 1800 seconds (30 minutes) as reported in the output file.

To achieve a balance between validity and efficiency, We took 1800s as the run time
of HPCG, which is able to get a valid result with acceptable time consumption.

4.3.2 Problem Size

A valid run must also execute a problem size that is large enough so that data arrays
accessed in the CG iteration loop do not fit in the cache of the device in a way that
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would be unrealistic in a real application setting. Presently this restriction means
that the problem size should be large enough to occupy a significant fraction of "main
memory", at least 1/4 of the total.

Based on this rule, We choose several problem sizes, trying to make out which can
lead to best performance.

Figure 11: Performance of different problem sizes

The parameter local domain dimension specified by user in hpcg.dat predicts the
problem size. The default local domain dimension is 104×104×104, which leads to
the worst performance according to the figure above. Higher performance is observed
when small problem size is specified. However, values under 16 will be defaulted to 16
(for a 16x16x16 mesh). Therefore, we choose 16 as the local domain dimension.

4.4 Performance Estimation

4.4.1 Theoretical Peak Performance

In order to assess how efficiently HPL and HPCG is running on a given computer, it is
useful to know the theoretical peak performance of the computer. By comparing the
measured performance of the program, We will then know how many percentage of
the theoretical peak are achieved.

The theoretical peak performance can be calculated as followed:

peak flops = processors× cores× clock speed× (2× FMA units)× vector size
64

(6)
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where processors is the number of processors that constitute a parallel computer, cores
per processor is the number of cores per multi-core processor, clock speed is usually
measured in GHz, FMA units is the number of FMA units per core, and the last term
is the number of double-precision operands held in each vector register.

According to this equation, the theoretical peak performance of our cluster can be
calculated as 1497.6 Gflops.

4.4.2 HPL Performance

Item Value

N 113511(75% of total memory)
NB 256
P×Q 4×9
Maximum Gflops 1136.16 Gflops
Efficiency 76.87%

Table 4: HPL estimation

4.4.3 HPCG Performance

Item Value

Testing time 1800s
Local domain dimension 16×16×16
Maximum Gflops 22.092 Gflops
Efficiency 1.48%

Table 5: HPCG estimation

5 Language Exam Challenge
Substantial progress has been made in training context-aware language models. The
fact that Google’s BERT model and Allen Institute’s ELMo are occupying majority of
SQuAD 2.0 leaderboard reaffirms their effectiveness as an embedding generator.

In this task, we try to implement and fine-train a model based on BERT to deal
with the Language Exam Challenge, which is a very challenging task. After conducting
tons of experiments and taking distributed training into consideration, we finally get
an accuracy of 85.76% over evaluation dataset.
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5.1 Hardware and Software Platform

5.1.1 Hardware Configuration

Item Configuration

CPU Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz*2
GPU Tesla V100 SXM2 32GB*8
Memory 512GB

Table 6: Hardware configuration

5.1.2 Software Configuration

Item Configuration

System CentOS 7.8
CUDA Toolkit 10.1
cuDNN 7.6.2
Nvidia Accelerator Driver 418.87.00
Python 3.6
Pytorch 1.2.0

Table 7: Software configuration

5.2 Analysis and Approach

This task drives us to teach machine understanding human language documents, to
be more specific, doing cloze tests. Cloze tests[7], which means there is a passage and
several blanks, each blank corresponds to four similar options, our target is to choose
the correct answer to fill in blank from options. Clearly, the big idea of this task is
a NLP task. This challenge requires a model with deep language understanding and
wide attention span.

To fulfil this Language Exam, we decide to start with a deep neural network. We
are going to not only test different models for the best one, but also take distributed
training into consideration to obtain a better result. Our code is totally based on
Pytorch.

5.3 Distributed Training

Nowadays, deep neural network models contain millions of parameters and need tons
of data, which demand high efficiency computation and valid optimization strategy. To
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improve the training performance of our model, we adopted some parallelism strategies
based on the designed HPC cluster.

5.3.1 Data Parallelism

Data Parallelism is when we split the mini-batch of samples into multiple smaller
mini-batches and run the computation for each of the smaller mini-batches in parallel.

In this task, data parallelism is implemented using torch.nn.DataParallel and
torch.nn.parallel.DistributedDataParallel. The core code of data parallelism is shown
below:

1 os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3,4,5,6,7"
2 ......
3 if args.local_rank != -1:
4 model = torch.nn.parallel.DistributedDataParallel(
5 model ,
6 device_ids=[args.local_rank],
7 output_device=args.local_rank)
8 elif n_gpu > 1:
9 model = torch.nn.DataParallel(model , device_ids=[0])

10 ......

Since we have 8 GPUs to train this model, the visible GPU IDs should be set to
"0,1,2,3,4,5,6,7". The parameter "local_rank" represents whether perform training
distributively on GPUs.

This method parallelizes the application of the given module by splitting the input
across the specified devices by chunking in the batch dimension. The module is
replicated on each machine and each device, and each such replica handles a portion
of the input. During the backwards pass, gradients from each node are averaged.

5.3.2 Model Parallelism

Model parallel is widely-used in distributed training techniques. Data parallelism is
able to train a neural network on multiple GPUs; this feature replicates the same
model to all GPUs, where each GPU consumes a different partition of the input data.
Although it can significantly accelerate the training process, it does not work for some
use cases where the model is too large to fit into a single GPU.

The high-level idea of model parallel is to place different sub-networks of a model
onto different devices, and implement the forward method accordingly to move inter-
mediate outputs across devices.

However, since our GPUs has enough memory size for the target model, we didn’t
adopted model parallelism in this task
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5.4 Experiments and Results

5.4.1 Model Selection

To obtain an accuracy as high as possible, we have to select a suitable model at first.
Therefore we modified several deep neural network models for this specific task of
language exam, including LSTM, TCN, BERT and ELMo. After reproducing these
models, we tested them on the evaluation dataset to choose the best one.

LSTM To test the performance of RNN-based supervised models, we train a bidirec-
tional LSTM to predict the missing words in passages. LSTM[3] is network with loops,
allowing information to persist. It can not only process single data points, but also
entire sequences of data.

TCN TCN[1] is identified to be a suitable RNN-type structures for tasks including
language modeling and music generation. We implemented two parallel TCNs where
one of which takes reversed input word vectors. The decoder consists of multiple linear
layers.

BERT BERT[2] makes use of Transformer, an attention mechanism that learns
contextual relations between words (or sub-words) in a text. In its vanilla form,
Transformer includes two separate mechanisms — an encoder that reads the text input
and a decoder that produces a prediction for the task. In our adapted BERT model,
each word is masked as a 3-length token, then a decoder with a few fully-connected
linear layers is used, which turns the 768-length embedding vector into a 30522-length
vector. The last layer is a softmax layer which computes the probability for each of
the options, and the model chooses the one with the highest probability. For this task,
we tried both BERT-base and BERT-large models. Since BERT is such a huge model
to train the whole parameters, we downloaded a pre-trained version of it and fine-tune
the model with dataset offered by ASC.

ELMo The adaption of ELMo[6] model is much difficult than before cause ELMo
uses character-level encoding of words. Thus, we modified the preprocessor and the
tokenizer for previous models to supply input to ELMo.

After reproducing these representative models, we trained them on the train dataset
and test on evaluation dataset, the overall results are as below:
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Figure 12: Comparison of different models

As can be seen from the figure, models’ performance on training dataset are
satisfying. However, when it comes to evaluation dataset, things get different. The
BERT-base and BERT-large both perform well, with LSTM and TCN getting less than
50% accuracy. ELMo, though the training accuracy is nearly perfect, the evaluation
accuracy is poor.

In summary consideration, we selected BERT-large model as the final choice for
this challenge, considering its excellent performance on training and evaluation set.

5.4.2 Batch Size

The batch size defines the number of samples that will be propagated through the
network.Choosing a batch size that is too small will introduce a high degree of variance
within each batch as it is unlikely that a small sample is a good representation of the
whole entire dataset. Conversely, if a batch size is too large, it may not fit in memory
of the compute instance used for training and it will have the tendency to overfit the
data.

Thus, selecting a well-performed batch size is a challenging work. Taking our overall
GPU memory into consideration, we choose three different batch sizes for comparison:
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16, 32 and 64. We trained three models for 10 epochs with these batch sizes, and the
result can be seen from the figures below.

(a) Training accuracy (b) Validation accuracy

Figure 13: Comparison between different batch sizes

As the figures show, batch size of 32 and 64 almost have the same performance
in training set and validation set. However, the batch size of 16 fails to meet our
expectation. Although it reach a peak of 98.51% in training set, the performance in
validation set is much lower than others.

Therefore, to achieve a balance between memory consumed and performance, we
finally selected a batch size of 32 to train our model.

5.4.3 Learning Rate

The learning rate is a hyper-parameter that controls how much to change the model in
response to the estimated error each time the model weights are updated. Choosing the
learning rate is challenging as a value too small may result in a long training process
that could get stuck, whereas a value too large may result in learning a sub-optimal
set of weights too fast or an unstable training process.
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(a) Training accuracy (b) Validation accuracy

Figure 14: Comparison between different learning rates

As indicated in the figure, a small learning rate of 1×10−6 leads to a slow convergent
speed in both training set and evaluation set. A large learning rate of 1×10−4 performs
well in training set, but the accuracy in evaluation set keep going down, which is
definitely out of consideration. As a result, we selected a learning rate of 1 × 10−5

for faster convergence and better performance. Finally, we obtained the accuracy of
85.76% over evaluation set.

5.4.4 Data Augmentation

The prediction accuracy of the Supervised Deep Learning models is largely reliant on
the amount and the diversity of data available during training. The relation between
deep learning models and amount of training data required is analogous to that of the
relation between rocket engines (deep learning models) and the huge amount of fuel
(huge amounts of data) required for the rocket to complete its mission (success of the
deep learning model).

In this task, we are provided with nearly 4000 passages for training. We generate
an enhanced dataset aimed for higher accuracy through replacing options (3 incorrect
options) by nearest neighbours according to GLoVE[5]. Articles and option indices kept
the same. This dataset should be more difficult for the machine to choose the correct
answer, cause some incorrect options in the origin dataset are easy to distinguish from
the correct one.

GLoVE is an unsupervised learning algorithm for obtaining vector representa-
tions of words. Training is performed on aggregated global word-word co-occurrence
statistics from a corpus, and the resulting representations showcase interesting linear
substructures of the word vector space. Thus, a GLoVE model has the ability to
represent words via a n-dimension vectors. In this section, we took advantage of a
300-d pre-trained GLoVE model trained on Wikipedia 2014.
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Unfortunately, this elaborate data augmentation didn’t make a significance dif-
ference, it merely increased the evaluation accuracy by about 0.6 percent. From
our perspective, this unsatisfied result may be caused by the nearest neighbours of
verbs—There are lots of verbs in options list, but a majority of their generated nearest
neighbours are their different tenses. Take "like" as an example, the top-3 nearest
neighbours are "liked", "liking" and "love". As a result, the different tenses of one
verb are not able to offer useful information.

In the future we are going to explore more efficient ways to perform data augmen-
tation.

5.5 Conclusion and Discussion

We can obtain a high accuracy of BERT to its training method. As discussed before,
BERT was trained by recovering masked tokens, which is exactly the cloze test, albeit
using a longer text. In fact, forcing BERT model to select 1 out of 4 options only
simplified the problem. In contrast, ELMo was trained for predicting the next word,
which is not perfectly suited for cloze test.

Lastly, the distributed training plays a important role in our approach. which
indicates the significance of HPC. Data parallelism and model parallelism offer us an
opportunity to train such a huge model in several GPUs better and quicker. We firmly
believe that the combination of HPC and deep learning is going to change the world
in a large scale.

6 The QuEST Challenge

6.1 Hardware and Software Platform

6.1.1 Hardware Configuration

Item Configuration
CPU(Main Frequancy) Intel Xeon Skylake 6133(2.5GHz)
vCPU 12core
Memory 24GB DDR4 2666Mhz
HardDisk 50G SATA × 1
GPU GN10X 2XLARGE40

Table 8: Hardware Configuration
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6.1.2 Software Configuration

Item Configuration Version
Operation System Ubuntu 16.04.1 LTS x86
Compiler CMake 3.5.1
Compiler GNU 7.4.0
Compiler Directive OpenMP 4.5
Math Library Intel MKL 11.1.0.080
Simulator QuEST 2.1.0

Table 9: Software configuration

6.2 Testing Methods and basic performance

The test method is as follows:

Figure 15: Test and Evaluation Process
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At first, we run both .c files in our operating system, and they are random.c and
GHZ_QFT.c. The procedures are as figure 16 and 17. At this point the hardware
environment is 12 core.

At this chapter, all test methods are similar with the method provided by ASC
competition organizing committee, which is submitted in Command line file(*.sh).

It took 333.0482 seconds to calculate the result of the first project named "random
circuit":

Figure 16: Random Circuit

For the second workload named "GHZ_QFT", it takes 353.1252 seconds to calculate
the result.

Figure 17: GHZ_QFT

The results of the calculations are found to be identical to the theoretical values
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in the annex submitted. While the program running, it takes 16626.833MB CPU
Memory.

6.2.1 Problem and Solution Analysis From QuEST’s Source Code

After completing the simulation of quantum circuits of 30 qubits by using the provided
quantum random circuit (random.c) and the quantum Fourier transform circuits
(GHZ_QFT.c), in order to improve the performance and choose parallel strategy, we
analysis QuEST’s source code and find several optimizable points.

First analysis code for quantum random circuit. The compiling process is complex,
so start from the dependence of random.c, which is as follow:

Figure 18: Dependence structure of random.c

According to the requirements from ASC competition organizing committee,
we are not allowed to modify random.c, so it is meanful to look into QuEST.h,
QuEST_percision.h and so on.

Though the dependency relationship of the above two c language files are complex,
which can be seen at appendix A, after analysing the compiling process, we find several
loop and nested loop which can be parallel.

First sample is in QuEST_common.c:

Code Listing 1: Loop in QuEST_common.c
1 // -------Line 98-101-------
2 void shiftIndices(int* indices , int numIndices , int shift)

{
3 for (int j=0; j < numIndices; j++)
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4 indices[j] += shift;
5 }
6 }

According to QuEST’s algorithm[4], change this loop into parallel will not affect results.
And In compiling process, this header file is reused many times, which can be

inferred from the following figure:

Figure 19: Dependence structure of QuEST_common.c

So implement parallel computing here will increase the performance and not affect
test result.

Though in python file, there exists similar nested loop, however, according to
QuEST’s algorithm, only several loop can be modified into parallel computing. The
analysis are as follows.

In utilities/QuESTTest/QuESTCore.py, there exists about five nested loop, but
only two of them can be modified without affecting test results. For example:

1 #Class:TestResults , Function:compareStates ,line:324 -336
2 if a.isDensityMatrix and b.isDensityMatrix:
3 for row in range(a.numQubitsRepresented):
4 for col in range(b.numQubitsRepresented):
5 aState = getDensityAmp(a,row ,col)
6 bState = getDensityAmp(b,row ,col)
7 if not self.compareComplex(aState ,bState ,tol):
8 return False
9 else:

10 for state in range(getNumAmps(a)):
11 aState = getAmp(a,state)
12 bState = getAmp(b,state)
13 if not self.compareComplex(aState ,bState ,tol):
14 return False

34



Here we can only modify the inner loop, because if row in a.numQubitsRepresented
is parallel computed.

Another example is
1 #Class:TestResults , Function:_run_test ,line:380 -468
2 for test in testType[0]:
3 if test in "Mm":
4 expectState = [None]*Qubits.numQubitsRepresented
5 success = True
6 for qubit in range(Qubits.numQubitsRepresented):
7 ... ...
8 if not success:
9 for qubit in range(Qubits.numQubitsRepresented):

10 ... ...
11 elif test in "Ss":
12 ... ...
13 if not success: # Print resultant state vectors
14 if not Qubits.isDensityMatrix:
15 ... ...
16 else:
17 for row in range(2** Qubits.numQubitsRepresented):
18 for col in range(2** Qubits.numQubitsRepresented):
19 a = getDensityAmp(Qubits , row , col)
20 b = getDensityAmp(expectState , row , col)
21 self.log(’{} {}’.format(a, b))

Though there exists many nested loop, but most of commands are written in order
to record log, we are supposed to use thread pool to accelerate the computation to
avoid out-of-order output.

After analysis on the second workload named "GHZ_QFT", we find GHZ_QFT.c
depends on the source codes from QuEST we cited before, so trategies for these files
will work for both workloads.

6.2.2 GPU Acceleration and Performance Estimation

In the first project, I use the GPU to accelerate the computation. To compile for GPU,
use

Code Listing 2: Bash command to use GPU
1 $ cmake -DGPUACCELERATED =1 -DGPU_COMPUTE_CAPABILITY =70 ..

Where COMPUTE_CAPABILITY is the compute cabability of GPU. This can be
looked up at the NVIDIA website, for my hardware it is 70.

We complete the simulation for both workloads, and get the right output file which
are the exact same as of probs.dat and stateVector.dat, given for reference.
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The workloads with random.c takes time 18.361457 seconds, and the other with
GHZ_QFT.c takes time 13.974194 seconds, they are both shown in the .log file.

The result shows that with a GPU accelerate, we achieve a very massive speedup
on simulation. However, the simulation need a large number memory on GPU, which
is the limit of GPU acceleration.

6.2.3 Performance Optimization Methods and Estimations

In order to to implement OpenMP parallel computing, ddd the following code to the
file’cmakelist.txt’.

Code Listing 3: Use OpenMP in CMakeList
1 #------OPENMP ---------
2 FIND_PACKAGE( OpenMP REQUIRED)
3 if(OPENMP_FOUND)
4 message("OPENMP␣FOUND")
5 set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS}␣${

OpenMP_C_FLAGS}")
6 set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}␣${

OpenMP_CXX_FLAGS}")
7 set(CMAKE_EXE_LINKER_FLAGS "${

CMAKE_EXE_LINKER_FLAGS}␣${
OpenMP_EXE_LINKER_FLAGS}")

8 endif()

After configure OpenMP, it is feasible for us to change .c files into parallel compu-
tation. We add the following code in QuEST_common.c’s nested loop:

Code Listing 4: Use OpenMP to solve nested loop in c files
1 #pragma omp parallel

And for python files, change the loops where will not affect test results using
multiprocessing, and use multiprocessing.dummy to creat thread pool as follows:

1 #Class:TestResults , Function:compareStates ,line:324 -336
2 from multiprocessing.dummy import Pool
3 ... ...
4 if a.isDensityMatrix and b.isDensityMatrix:
5 for row in range(a.numQubitsRepresented):
6 #for col in range(b.numQubitsRepresented):
7 bitems=b.numQubitsRepresented
8 pool=ThreadPool ()
9 pool.map(quickgetDensityAmp ,a,bitems)
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As is analysed above, both workloads depend on files depend on these source code,
so after modification we re-run two workload to estimate the result.

After modified, it takes 329.989167 seconds for the workload "random circuit" to
calculate the results, and the output is same as probs.dat and stateVector.dat given
for references.

For the second workload named "GHZ_QFT", it takes 354.532118 seconds to
calculate the results, and the output is same as probs.dat and stateVector.dat given
for references just as the workload before.

Both workload’s run time reduce 2%, though many nested loop arr changed into
parallel computing. Our team think the reason of small reduction is the time-consuming
communication in RAM, which counteracts the enhancement from parallel computing.

7 The PRESTO Challenge

7.1 Hardware and Software Platform

7.1.1 Hardware Configuration

We use one CPU node to compute the PRESTO Challenge. Our hardware configuration
is shown in Table 10. CPU is Intel Xeon Skylake 6146 with 3.2GHz main frequemcy.
The number of cores is 32. RAM is 128GB. Intranet bandwith is 8Gbps.

Item Configuration
CPU(Main Frequancy) Intel Xeon Skylake 6146(3.2GHz)
vCPU 32core
RAM 128GB DDR4 2666Mhz
Intranet bandwidth 8Gbps
Hard disk 50G SATA × 1

Table 10: Hardware Configuration

7.1.2 Software Configuration

Our software configuration is shown in Table 11. We use CentOS 7(operation system),
gcc/g++/gfortran 4.8.5(compiler), PRESTO 3.0.1, and python 3.7.2.
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Item Configuration
Operation System CentOS 7.8
Compiler(gcc) 4.8.5
Compiler(g++) 4.8.5
Compiler(gfortran) 4.8.5
Python 3.7.2
Numpy 1.19.4
Scipy 1.6.0
Mpi4py 3.0.3
Astropy 4.2
Presto 3.0.1
Tempo 13.101
Glib 2.0
Cfitsio 3.49
Pgplot 5.2
OpenMpi 1.4.1

Table 11: Software configuration

7.2 PRESTO Algorithm

The procedure of PRESTO algorithm contains about 13 steps: Examine data format;
Search for RFI. Traverse all signals, determine which intervals are interference and
make a mark. Generate a mask file; Make a topocentric, DM=0 time series; FFT
the time series. Transform time domain signal to frequency domain by fast fourier
transform; Identify "birdies" to zap in searches; Make a zaplist; Make de-dispersion
plan; Divide broadband signals into many subbands; Process subbands and splice these
results back into a broadband signal, which can decrease computational complexity;
de-disperse; Search the data for periodic signals. Traverse signals, find periodic signals;
Search the data for single pulses; Sift through the candidates; Fold the best candidates;
Start timing the new pulsar.

We pay attention to the several most time consuming steps, including de-dispersion,
FFT, searching for periodic signals and folding. De-dispersion plan divides the entire
de-dispersion task into many subtasks, which can be computed parallel. FFT, searching
and folding all need to traverse many files and process them serially. These steps can
be parallel computed according to our section 7.4.

7.3 Testing Method

We test our parallel script on the given two datasets, GBT_Lband_PSR.fil and
Dec+1554_arcdrift+23.4-M12_0194.fil. We compare our search result with the given
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pipeline.py, making sure that they are the same. And we record the running time of
our parallel script. Comparing our running time with benchmark, the running time
of the given pipeline.py, we can evaluate the efficiency improvement of our parallel
method.

The test command line is shown below, which calls the run.sh in our submission
file. The my_pipeline.py is our parallel python script for presto.

1 #test on GBT_Lband_PSR.fil
2 bash run.sh GBT_Lband_PSR.fil
3 #test Dec +1554 _arcdrift +23.4 - M12_0194.fil
4 bash run.sh Dec +1554 _arcdrift +23.4- M12_0194.fil
5 #content of run.sh
6 rm -rf subbands
7 (time python ./ my_pipeline.py ${1} ${2}) > log.

pulsar_search 2>&1

The final search result should be compared with standard pulsar catalogue, like
https://www.atnf.csiro.au/research/pulsar/psrcat/ provided by Australian National
Observatory. Match the parameters of candidates in cands.txt with pulsars in pulsar
catelogue and judge whether they are pulsars by the bias between parameters. If the
bias is low enough, we can decide that our search result are real pulsars.

7.4 Parallel Strategy

Our parallel strategy is data parallel. We utilize parallel computing to avoid serial
loops. For loop code blocks, if the computation of every iteration doesn’t affect each
other, we can speed them by distributing all tasks to multiple processes and computing
them parallel.

We notice that there are obvious serial loops in the computation procedure of presto,
which can be optimized by parallel computing. In presto pipeline, there are about 13
steps, such as examining data format, de-dispersion and so on, while some of them
are not effective and necessary. According to the pipeline.py provided by ASC20-21
Preliminary Round Notification, the required steps are examining data format, making
de-dispersion plan, de-dispersion, searching for periodic signals, sifting through the
candidates and folding the best candidates. We find that there are serial loops in steps
of de-dispersion, fft, searching and folding, as shown in following example code. Taking
fft for example, a loop is applied to traverse all datfiles and fft every single datfile is
independent from each other. Therefore, we can fft every datfile parallel using multiple
processes.

1 #the fft step in the given pipeline.py
2 for df in datfiles:
3 fftcmd = "realfft %s" % df
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4 print(fftcmd)
5 output = getoutput(fftcmd)
6 logfile.write(output)
7
8 #the search step in the given pipeline.py
9 for fftf in fftfiles:

10 searchcmd = "accelsearch -zmax %d %s" % (zmax , fftf)
11 print(searchcmd)
12 output = getoutput(searchcmd)
13 logfile.write(output)

We use packages, mpi4py and mulitiprocessing, to implement parallel computing.
Mpi4py is a standard message passing interface package for python and the effectiveness
of message-passing has been proved. So mpi4py is a good choice for parallel computing
in our python script. What’s more, the multiprocessing package provides convenient
API to produce processes for parallel computing and it utilizes subprocesses instead of
threads to bypass the global interpreter lock effectively, which is also suitable for parallel
computing in python. Baesd on these two packages, we make some computational
steps parallel, including de-dispersion, fft, searching and folding.

For de-dispersion step, we use message-passing to implement data parallel computing.
The ddplan.py in presto provides de-dispersion scheme, which is to divide broadband
signal to several subbands and guide us to compute de-dispersion on subbands. We
learn that subbands are totally divided and independent which are suitable for a data
parallel strategy. Therefore, instead of computing subtasks in a serial loop, we collect
all subbands in the root process and equally distribute subbands to other processes
through broadcast.

The data parallel strategy is shown in the following python script, which is a frag-
ment of the dd_MPI.py in my submission file. First, we define MPI.COMM_WORLD
, get the number of prosesses and give them ranks. Second, the root process receives
the de-disperion scheme stored in the list variable dmlist and broadcast the data of
subbands to other processes. Third, the task of every process is distributed equally
and then execute commands parallel to complete de-dispersion.

For folding step, we take a similar data parallel strategy using mpi4py, which is
done by the folding_mpi.py in our submission file.

1 #parallel compute de -dispersion
2 comm = MPI.COMM_WORLD
3 size = comm.Get_size ()
4 rank = comm.Get_rank ()
5 numjobs = len(dmlist)
6 # the collection of jobs
7 job_content = []
8 for i, dm in enumerate(dmlist):
9 lodm = dm[0]

10 subDM = np.mean(dm)
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11 job_content.append ((lodm , subDM))
12
13 # arrange the works and jobs
14 if rank == 0:
15 # this is head worker
16 # jobs are arranged by this worker
17 job_all_idx = list(range(numjobs))
18 else:
19 job_all_idx = None
20
21 job_all_idx = comm.bcast(job_all_idx , root=0)
22 njob_per_worker = int(numjobs / size)
23 this_worker_job = [job_all_idx[x] for x in range(rank *

njob_per_worker , (rank + 1) *
njob_per_worker)]

24
25 # map the index to parameterset [eps ,anis]
26 work_content = [job_content[x] for x in this_worker_job]
27 #execute subband preprocessing on each process
28 for lodm , subDM in work_content:
29 o_1 = my_prepsubband_1(subDM)
30 log.write(o_1)
31 o_2 = my_prepsubband_2(lodm , subDM)
32 log.write(o_2)

For fft and search steps, we use multiprocesses package to implement data parallel.
First, we define a function runcmds() to represent the same execution on every input
file. Then we use the threads API to map commands to the function runcmds() with
just one statement. In this way, we can implement data parallel computing by multiple
processes.

1 #parallel compute fft
2 c = ’’
3 def runcmds(cmds):
4 traceback.print_exc ()
5 output = []
6 for cmd in cmds:
7 output.append(getoutput(cmd))
8 return c.join(output)
9

10 commands = []
11 threads = Pool()
12 commands.clear()
13 for df in datfiles:
14 fftcmd = "realfft %s" % df
15 print(fftcmd)
16 commands.append([fftcmd])
17
18 logfile.write(c.join(threads.map(runcmds , commands)))
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19 threads.map(runcmds , commands)
20 threads.close ()
21 threads.join()

The complete computation procedure is done by my_pipeline.py. This script calls
dd_MPI.py and fold_mpi.py to compute de-dispersion and folding the best result
parallel. And it use the multiprocesses module to compute fft and searching parallel.
Then the four most time consuming steps are all computed parallel using data parallel
strategy.

7.5 Performance Optimization

In this subsection, We test our parallel script with different number of cores, aiming
to find the best core number for our parallel strategy. We use two metrics, execution
time and CPU utilization. We use $top command to monitor CPU utilization.

We change the number of cores from 8 to 32, recording execution time and CPU
utilization. When monitoring CPU utilization, we find that there are two peaks of
CPU utilization. The highest peak achieves 100% for all numbers of cores. And the
second highest peak achieves 100% when the number of cores is smaller than 24. The
execution time achieves the best at about 22 cores.

(a) Execution time (b) CPU utilization

Figure 20: The change of execution time and CPU utilization.

As shown in Figure 20(a), the execution time of our parallel script fluctuates with
changes of the number of cores. When the number is smaller than 10, the execution time
soar highly because there aren’t enough processes for parallel computing. Although the
execution time may fluctuate randomly by one to two seconds, there is still a minimum
about 25.434s at 22 cores. The execution time at 12 cores also looks short but it is
about 1.0 second longer than the minimum.
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As shown in Figure 20(b), the peak value of CPU utilization is always bigger than
90%, which reflects that our parallel strategy could take full advantage of hardware
computing power. It also reflects that when the number of cores is bigger than 24,
the CPU computing power is not fully used. And the execution time from 26 cores to
32 cores hardly changes. So using less than 26 cores has the best computing power
utilization.

7.6 Performance Estimation

In this subsection, we compare our total execution time and step execution time with
benchmark(pipeline.py), under the premise of ensuring the correct pulsar searching
result. All experiments are executed on our CPU node described in section 7.1 and we
use all 32 cores for parallel computing.

We compare our total execution time with pipeline.py on two given datasets, as
shown in Table 12. On GBT_Lband_PSR dataset, our execution time is 11.292s and
pipeline.py consumes 72.448s, where our parallel script saves 84.4% execution time.
On Dec+1554_arcdrift+23.4-M12_0194 dataset, our execution time is 30.182s and
pipeline.py consumes 431.096s, where our parallel script saves 93.0% execution time.

DataSet Execution time Execution time(parallel) Time reduced
GBT... 72.448s 11.292s 84.4%
Dec... 431.096s 30.182s 93.0%

Table 12: Comparison between our parallel script and the given pipeline.py

We compare our step execution time with pipeline.py on the second dataset, as
shown in Figure 21. In de-disperision step, our parallel script consumes 8.64s, saving
87.0% execution time comparing with 66.25s(serial execution time). In FFT step, it
consumes 0.89s, saving 93.4% time comparing with 24.34s. In search step, it consumes
7.18s, saving 95.3% time comparing with 152.57s. In folding step, it consumes 13.48s,
saving 92.8% time comparing with 187.94s.

The comparison result reflects that our parallel script greatly optimizes the execution
time of presto. It is reasonable that data parallel strategy is a efficient method for
optimizing presto, since there are many serial data processing that could be processed
parallel. What’s more, our parallel script has the same number of search result to the
given pipeline. They both have 11 candidates in GBT_Lband_PSR dataset and 36
candidates in Dec+1554_arcdrift+23.4-M12_0194 dataset. And the final prefolding
result of them is correct according to pulsar catalogue.
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Figure 21: Comparision between parallel script and benchmark.

7.7 Problem and Solution Analysis

The problem we meet is that when specifying certain number of processes, the result
would be wrong. As we change the number of processes used in dd_MPI.py and
fold_mpi.py, the candidates become fewer, fftfiles and datfiles become fewer too. We
first think that our parallel scripts have a bug. But when the number of processes is
set appropriately, our scripts still run without exception.

When we looking up our parallel code, we realize that the number of processes must
be an integer multiple of the number of tasks. As shown in the following code block,
we equally distributed our tasks to processes. When the tasks couldn’t be equally
distributed, some tasks would be ignored by our parallel script. The easiest solution of
this problem is to use the number of tasks as the number of processes. And we can set
more CPU cores to ensure our efficiency. If we manage to divide every single task and
utilize parallel computing for subtasks, then we could set more processes to tackle this
problem.

1 #the statement in parallel scripts that should be mentioned
2 njob_per_worker = int(numjobs / size)
3
4 #the proper setting of the number of processes
5 pros = len(dmlist)
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A Appendix of QuEST

Figure 22: Function call relation

Figure 23: Dependence structure of QuEST_validation.c
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Figure 24: Dependence structure of QuEST_validation.H

Figure 25: Dependence structure of QuEST_precision.h

Figure 26: Dependence structure of QuEST_precision.h

B Appendix of Presto

B.1 Presto Dependencies Installation

Code Listing 5: Commands for installing presto denpendencies
1 # FFTW Installation
2 $ tar -zxvf fftw -3.3.8. tar.gz
3 $ cd fftw -3.3.8. tar.gz
4 $ ./ configure --enable -shared --enable -single --prefix =/

home/astrosoft/fftw
5 $ make
6 $ make install
7
8 # PGPLOT Installation
9 $ cd /home/download

10 $ wget ftp://ftp.astro.caltech.edu/pub/pgplot/pgplot5 .2.
tar.gz

11 $ tar -zxvf pgplot5 .2.tar.gz
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12 $ cd /home/astrosoft
13 $ mkdir pgplot
14 $ cd pgplot
15 $ cp -r /home/download/pgplot/drivers.list .
16 $ vim drivers.list
17 In this step , we delete the exclamation point before PS/

VPS/VCPS/XWINDOWS to make them effective. After that , we
shall modify makefile.

18 $ /home/download/pgplot/makemake /home/download/pgplot
linux g77_gcc

19 $ vim makefile
20 $ (change from FCOMPL = g 7 7 to FCOMPL = g f o r t r a n )
21 We notice that the installation of PGPLOT relies on lib

X11 , thus we execute the following command.
22 $ yum install libX11 -devel
23 $ make
24 $ make cpg
25
26 # TEMPO Installation
27 $ git clone git:// git.code.sf.net/p/tempo/tempo
28 $ yum install csh
29 $ cd tempo/
30 $ ./ prepare
31 $ ./ configure prefix =/home/astrosoft/tempo
32 $ make \&\& make install
33
34 Glib Installation
35 $ yum install glib2 -devel
36
37 # Cfitsio installation
38 $ tar -zxvf cfitsio -3.49. tar.gz
39 $ cd cfitsio -3.49
40 $ mkdir /home/astrosoft/cfitsio
41 $ ./ configure --prefix =/home/astrosoft/cfitsio
42 $ make
43 $ make install
44
45 # Modify the environment configure.
46 $ vi .bashrc
47 ADD
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48 PATH=$PATH:$HOME/bin:/usr/local/bin:/home/astrosoft/pgplot
/bin

49 LD_LIBRARY_PATH =/home/astrosoft/pgplot:
50 /home/astrosoft/fftw/lib:/home/astrosoft/cfitsio/lib
51 C_INCLUDE_PATH =/home/astrosoft/cfitsio/include :/home/

astrosoft/fftw/include
52 PKG_CONFIG_PATH =/home/astrosoft/cfitsio/lib/pkgconfig
53 :/home/astrosoft/fftw/lib/pkgconfig :/usr/lib64/pkgconfig
54 PGPLOT_DIR =/home/astrosoft/pgplot :/usr/local/lib
55 PGPLOT_FONT =/home/astrosoft/pgplot/grfont.dat
56 PGPLOT_DEV =/ Xserve
57 PGPLOT_LIB="-L␣/usr/lib64␣-lX11␣-L␣/home/astrosoft/pgplot␣

-lpgplot"
58 TEMPO=/home/download/tempo
59 export PATH
60 export LD_LIBRARY_PATH
61 export C_INCLUDE_PATH
62 export PKG_CONFIG_PATH
63 export PGPLOT_DIR
64 export PGPLOT_FONT
65 export PGPLOT_DEV
66 export PGPLOT_LIB
67 export TEMPO
68 $ source .bashrc

B.2 Presto Installation

Code Listing 6: Commands for installing presto
1 $git clone git:// github.com/scottransom/presto.git
2 $cd presto
3 $git pull
4 $cd src
5 $make makewisdom
6 $make prep
7 $make
8 $cd $PRESTO
9 $pip install --user .

10 $python setup.py build
11 $python setup.py install
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12 $vi .bashrc
13 # .bashrc
14 PATH=$PATH:$HOME/bin:/home/astrosoft/presto/bin:/usr/local

/bin:/home/astrosoft/pgplot/bin:/home/astrosoft/presto/
bin:/home/astrosoft/optimus :/home/astrosoft/fv:/home/
astrosoft/psrcat_tar :/home/download/tempo/src/:/ usr/
local/lib/openmpi/bin

15 LD_LIBRARY_PATH =/home/astrosoft/presto/lib:/home/astrosoft
/pgplot :/home/astrosoft/fftw/lib:/home/astrosoft/cfitsio
/lib:/usr/local/lib/openmpi/lib

16 C_INCLUDE_PATH =/home/astrosoft/presto/include :/home/
astrosoft/cfitsio/include :/home/astrosoft/fftw/include

17 PKG_CONFIG_PATH =/home/astrosoft/cfitsio/lib/pkgconfig :/
home/astrosoft/fftw/lib/pkgconfig :/usr/lib64/pkgconfig

18 PYTHONPATH =/home/astrosoft/presto/lib/python
19 PGPLOT_DIR =/home/astrosoft/pgplot :/usr/local/lib
20 PGPLOT_FONT =/home/astrosoft/pgplot/grfont.dat
21 PGPLOT_DEV =/ Xserve
22 PGPLOT_LIB="-L␣/usr/lib64␣-lX11␣-L␣/home/astrosoft/pgplot␣

-lpgplot"
23 PRESTO =/home/astrosoft/presto
24 TEMPO=/home/download/tempo
25 PSRCAT_FILE =/home/astrosoft/psrcat_tar/psrcat.db
26 FFTW=/home/astrosoft/fftw
27
28 export PATH
29 export LD_LIBRARY_PATH
30 export C_INCLUDE_PATH
31 export PKG_CONFIG_PATH
32 export PYTHONPATH
33 export PGPLOT_DIR
34 export PGPLOT_FONT
35 export PGPLOT_DEV
36 export PGPLOT_LIB
37 export PRESTO
38 export TEMPO
39 export PSRCAT_FILE
40 export FFTW
41 $source .bashrc
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