
Report of face-recognition by finetuning
ResNet and Haorui-Net

Haorui Li
61518407

Chien-Shiung Wu College
haoruili@seu.edu.cn

Abstract

For face recognition, first, I use MTCNN and face.evoLVe for automatic data1

cleansing and change parameters in MTCNN to avoid dirty data. Then I trained2

two models, one is self-modified Resnet called Haorui-Net which use Cov2d3

layers in ResNet for fracture extraction and use pooling and softmax layers to4

do classifications, another is InceptionResNetV1 with pre-trained weight, and5

fine-tuning the model on classmates’ data. During the training process, I compare6

several different optimizers and combination of batch and epoch and use the best7

one. Finally the best model recognizes 86/104 classmates in 48s and it is Haorui-8

Net. At last, when it comes to why my model is better than ResNet, perhaps it is9

due to deeper network need more data size and my Haorui-Net is simpler so it can10

get its best with small data.11

1 Data prepare12

1.1 Face alignment13

To begin with, I use MTCNN[1] and face.evoLVe.PyTorch for automatic face alignment.14

MTCNN propose a deep cascaded multi-task framework which exploits the inherent correlation15

between them to boost up Resnet’s performance on face alignment, the architecture is as follows:16

Figure 1: MTCNN’s architecture

Machine Learning Experiment Report of Face Recognition



But I find though MTCNN is very fast, but it sometimes go wrong and bring in dirty data, like the17

Figure2, and these dirty data will definitely bring catastrophe for model trainning.18

Figure 2: Samples of dirty data by MTCNN

So I turn to face.evoLVe’s face-align tools and finally get good data. This tool can be find at:19

https://github.com/ZhaoJ9014/face.evoLVe.PyTorch20

This tool is about 4-times slower than MTCNN, but brings no dirty data.21

But I am wandering why MTCNN get these wrong results, because it is almost at state-of-the-art.22

And the face.evoLVe tool is designed base on MTCNN. So I test several parameters, It shows that23

when the default minim-window-size is undefined, mtcnn starts from 10x10 and tends to get wrong24

faces. So after I set the minimum size at 40x40, all results are good.25

1.2 Rebuild folder architecture26

For quick detect image labels, I use torchvision.datasets.ImageFolder to automatically read classmates27

name. To use this function, I rebuild the data folder’s architecture by code.28

Exactly, I use os.rename and string.split. Following are some codes I use to split the student number:29

1 def replaceDirName(rootDir):30

2 #Change the folders ’ name under rootDir , split the student number by31

’-’ or ’_’32

3 num = 033

4 dirs = os.listdir(rootDir)34

5 for dir in dirs:35

6 print(’oldname is:’ + dir)36

7 num = num +137

8 try:38

9 temp = dir.split(’_’)[1]39

10 except IndexError:40

11 try:41

12 temp=dir.split(’-’)[1]42

13 except:43

14 print("This is not Number -Name structure", dir)44

15 continue45

16 except:46

17 print("This is not - or _ structure", dir)47

18 continue48

19 print(’new name:’,temp)49

20 oldname = os.path.join(rootDir , dir)50

21 newname = os.path.join(rootDir , temp)51

22 os.rename(oldname , newname)#replace52

23 replaceDirName(’align_data ’)53

Listing 1: Change folder names for ImageFloder function

After rebuild the folder architecture, torchvision.datasets.ImageFolder is able to automatically read54

sub-folders’ name as image label.55

2

https://github.com/ZhaoJ9014/face.evoLVe.PyTorch


1.3 Transforms56

After clean the data and align all the faces, I made some extra preparations for models robustness and57

these work has brought about 3-point increase in test accuracy.58

When load in the data I perform some random transforms to the images to improve training. Different59

transforms can be attempted and I tried various ones, like Random-Color-Jitter and Random-Rotation,60

along with Random-Horizontal-Flip.61

Figure 3: Examples of random Color Jitter

Finally I choose all these transforms to improve the model’s robustness. And the random-color-62

jitter improves about 2 points in accuracy probably because classmates take photo at different light63

environment.64

2 Design model architecture65

Due to the fact that the data we have is small scale, it will be hard to train a model without over-fitting.66

So I think it is recognized to use some pre-trained model and do the fine-tuning. What I have to do is67

design the final layers.68

2.1 Pre-trained ResNet69

The pre-trained weight I download is the Facenet trained by Google. They use triple loss and finally70

get 0.997 accuracy at Lwf, the High-Level model structure of Facenet is as follow[2]:71

Figure 4: High Level Model Structure of Facenet

And for the first model, I use Inception-ResNet[3] to fine-tuning the model, which is designed for72

fine-tuning Facenet. The architecture of Inception-ResNet is as follow:73

3



Figure 5: Inception-ResNet

The code of final layers are:74

1 self.block8 = Block8(noReLU=True)75

2 self.avgpool_1a = nn.AdaptiveAvgPool2d (1)76

3 self.dropout = nn.Dropout(dropout_prob)77

4 self.last_linear = nn.Linear (1792, 512, bias=False)78

5 self.last_bn = nn.BatchNorm1d (512, eps =0.001 , momentum =0.1,79

affine=True)80

6 self.logits = nn.Linear (512, tmp_classes)81

Listing 2: Final layer Codes

And I will modified the final layers, then test which model is the best.82

2.2 Modified ResNet83

From the upper section we can see the final six layers are:84

1 [Block8(85

2 (branch0): BasicConv2d(86

3 (conv): Conv2d (1792 , 192, kernel_size =(1, 1), stride =(1, 1), bias87

=False)88

4 (bn): BatchNorm2d (192, eps =0.001 , momentum =0.1, affine=True ,89

track_running_stats=True)90

5 (relu): ReLU()91

6 )92

7 (branch1): Sequential(93

8 (0): BasicConv2d(94

9 (conv): Conv2d (1792 , 192, kernel_size =(1, 1), stride =(1, 1),95

bias=False)96

10 (bn): BatchNorm2d (192, eps =0.001 , momentum =0.1, affine=True ,97

track_running_stats=True)98

11 (relu): ReLU()99

12 )100

13 (1): BasicConv2d(101

14 (conv): Conv2d (192, 192, kernel_size =(1, 3), stride =(1, 1),102

padding =(0, 1), bias=False)103

15 (bn): BatchNorm2d (192, eps =0.001 , momentum =0.1, affine=True ,104

track_running_stats=True)105

16 (relu): ReLU()106

17 )107

18 (2): BasicConv2d(108

19 (conv): Conv2d (192, 192, kernel_size =(3, 1), stride =(1, 1),109

padding =(1, 0), bias=False)110

4



20 (bn): BatchNorm2d (192, eps =0.001 , momentum =0.1, affine=True ,111

track_running_stats=True)112

21 (relu): ReLU()113

22 )114

23 )115

24 (conv2d): Conv2d (384, 1792, kernel_size =(1, 1), stride =(1, 1))116

25 ),117

26 AdaptiveAvgPool2d(output_size =1),118

27 Linear(in_features =1792, out_features =512, bias=False),119

28 BatchNorm1d (512, eps =0.001 , momentum =0.1, affine=True ,120

track_running_stats=True),121

29 Linear(in_features =512, out_features =8631, bias=True),122

30 Softmax(dim=1)]123

Listing 3: Final layers

Because earlier layers as containing the base-level information needed to recognize face attributes124

and base level characteristics, so I want to cut the layers after Conv2d and use some my own code,125

and just updating the final layers to include another 104 faces.126

Put all beginning layers in an nn.Sequential:127

1 model_ft = nn.Sequential (*list(model_ft.children ())[: -5])128

Listing 4: Keep the conv2d layers

Now, model modified is a torch model but without the final linear, pooling, batchnorm, and sigmoid129

layers.130

After this, I design another final layers class includes sample Flatten and Normalize layers in a gesture131

to use features extracted by Cov2d layers, the codes are:132

1 #Change the final layers as follows133

2 model_modified.avgpool_1a = nn.AdaptiveAvgPool2d(output_size =1)134

3 model_modified.last_linear = nn.Sequential(135

4 Flatten (),136

5 nn.Linear(in_features =1792 , out_features =512, bias=False),137

6 normalize ()138

7 )139

8 model_modified.logits = nn.Linear(layer_list [4]. in_features ,104)140

9 model_modified.softmax = nn.Softmax(dim =1)141

10 model_modified = model_modified.to(device)142

Listing 5: Haorui Net

So the architecture is:143

Figure 6: Haorui-Net Architecture

We can name it Haorui-Net. In the next section I will train these two models and show some details144

to pick the winner.145

5



3 Training and select parameters146

After design the model, I begin the training step. Tried different epoch, batch size, learning rate and147

models.148

3.1 Check GPU Memory149

The options of batch size are often limited by GPU memory.150

On my machine, I have a single Tesla-P-100 with 16280 MiB memory, which means I have more151

choice on batch size and epochs.152

Use ’!nvidia-smi’ I get the following in formations of GPU memeory, it shows that 6869 MiB memory153

is located at device and I still have space to test.154

Figure 7: 24 Epochs and 64 Batch-size

3.2 Should I use Adam?155

Optimizer plays an important role in deep-learning, and different optimizer can have totally perfor-156

mance.157

As we all know, "Adam" is honoured as an excellent optimizer, but should I use it too in my work? So I158

test another theoretically-good optimizer which is called RMS-prop, and the results in Tensorborad-X159

are as follows:160

Figure 8: Trainning loss of RMS in TensorboradX

6



It shows that the loss of RMS optimizer finally convergences at about 4.5, and in the preliminary161

stage it really decreased fast.162

But with the same epochs and batch-size, which is 32 and 128, the Adam optimizer performs really163

better:164

Figure 9: Trainning loss of Adam in TensorboradX

It shows that the loss of Adam optimizer finally convergences at about 0.2, even though in the165

preliminary stage it decrease slower than RMS but finally it convergences at a better point.166

I also test the FPS of training and testing, but it shows that this two optimizer are almost the same:

Figure 10: FPS of RMS Figure 11: FPS of Adam

167

As its shown above, Adam optimizer performs better and I will use it in trainning my model.168

3.3 Epochs and batch-size169

After choose several combinations of epochs and batch size, I get the results as follows on Inception-170

ResNet:171

7



Table 1: Records of combination for ResNet

Epochs Batch size TP Train FPS

10 16 21 427.4
24 16 26 420.7
24 32 41 279.6
24 64 75 153.4
32 64 71 161.5
24 128 80 149.5
32 128 77 233.9
24 256 70 183.3
32 256 77 192.8
64 256 76 155.3

From the chart we can see, more batch size often means better performance, but with more batch size,172

sometimes it need more epochs to minimize the loss, just like 256 batch size performs weaker than173

128 batch size in 24 epochs, and become better in 32 epochs.174

So finally, the ResNet performs its best at 24 epochs, 128 batch size and reaches 82 true positive.175

This model was saved as ’24-epoch-128bz-VGGFACE2-TEST80ACC.pb’.176

With the chart above, I can qiuckly choose some combinations for Haorui-Net, and the results are as177

follows:178

Table 2: Records of combination for Haorui-Net

Epochs Batch size TP Train FPS

24 64 71 153.9
24 128 82 171.4
32 128 86 255.5
32 256 77 210.4
64 256 77 195.7

Luckily, the Haorui-Net performs better than ResNet its best at 24 epochs, 128 batch size and reaches179

82 true positive. This model was saved as ’32-epoch-128bz-MODIFIED-TEST86ACC.pb’.180

So I’m proud to announce that Haorui-Net becomes the winner in this combination, with ten more181

ture-positive!182

But what I want to point out is that, Haorui-Net is weaker in the decrease of loss, for ResNet, the183

minimum of loss is about 0.27 while training, but for Haorui-Net, the minimum loss is about 3.8, it184

probably means ResNet is designed more smarter in track and reduce the loss.185

4 Test and Conclusion186

Because in the training stage I use Face.LVe to process face images, now when test, using this tool187

will be slow, so I turn to MTCNN and by change its parameters it seldom detect wrong images.188

1 mtcnn = MTCNN(image_size =160,189

2 margin=0,190

3 min_face_size =60,191

4 thresholds =[0.6 ,0.7 ,0.7] ,192

5 factor =0.709 , post_process=True ,device=device)193

Listing 6: MTCNN Parameter

I load the best model of Haorui-Net and the test of Face-Recognize shows:194

8



Figure 12: Face Recognize Test

It takes about 0.46 second per student for face recognize and the accuracy is 82.7% for the best model195

of "Haorui Net", not so bad.196

But this result is slower than ResNet:197

Figure 13: Face Recognize Test

For Face-Verification, I find that it takes too long to run the function because it have to check all the198

faces, so I just check the first 40 faces and get the results below:199

Figure 14: Face Verification Test

In conclusion, I test the Resnet and hand-modified Haorui-Net, all based on pretrained weights,200

finally Haorui-Net win the competition in accuracy. I use Adam optimizer because it performs best in201

minimising loss. For the best model, it takes about 0.46 second per student for face recognize and the202

accuracy is 82.7 %.203

Why my model can performers better than this champion model? (though the resnet model in paper204

get 99.5% accuracy and only 76% in my work) I think perhaps it because our database is small and205

only need to classify 104 people, when the neuronal network is more and more deep, it needs more206

data to get its best accuracy, and my Haorui-Net is simpler, which means with small data it is more207

easy to be trained at its best. Last but not least, the gap between these two model is small, with more208

experiment of combination of epochs and batchsize, perhaps ResNet can give better results.209

5 Expectations210

Though my model get a good result in accuracy, but there still remains something I want to explore.211

For example, my face-verification function runs too slow to verified all pictures and names, I think it212

perhaps due to my algorithm is O(n2) and I write too many works to move data between GPU and213

CPU which is time-consuming. And I think perhaps use B+ tree or some other data structure can214

speed up the searching process, also, keep all the data on one device can avoid moving them.215

Moreover, though my model works great on our classmate-dataset, but for actual industrial demand,216

sometimes the faces in picture is really small, slant, and only have side faces, like surveillance videos.217

To recognize faces in these scenes, perhaps we have to made a 3D-model for faces[4], and use more218

skills to avoid overfitting like knowledge-distillation.[5]219

In conclusion, there are still large space to modify this work for specific context.220

9



References221

[1] Zhang, K., Zhang, Z., Li, Z. Qiao, Y. (2016). Joint Face Detection and Alignment using Multi-task Cascaded222

Convolutional Networks.. CoRR, abs/1604.02878.223

[2]Schroff, F., Kalenichenko, D. Philbin, J. (2015). FaceNet: A Unified Embedding for Face Recognition and224

Clustering (cite arxiv:1503.03832Comment: Also published, in Proceedings of the IEEE Computer Society225

Conference on Computer Vision and Pattern Recognition 2015)226

[3]Szegedy, C., Ioffe, S., Vanhoucke, V. Alemi, A. A. (2017). Inception-v4, Inception-ResNet and the Impact of227

Residual Connections on Learning. Proceedings of the 31st AAAI Conference on Artificial Intelligence (p./pp.228

4278–4284), : AAAI Press.229

[4]Dou, P., Zhang, L., Wu, Y., Shah, S. K. Kakadiaris, I. A. (2015). Pose-robust face signature for multi-view230

face recognition.. BTAS (p./pp. 1-8), : IEEE. ISBN: 978-1-4799-8776-4231

[5]Luo, P., Zhu, Z., Liu, Z., Wang, X. Tang, X. (2016). Face Model Compression by Distilling Knowledge232

from Neurons.. In D. Schuurmans M. P. Wellman (eds.), AAAI (p./pp. 3560-3566), : AAAI Press. ISBN:233

978-1-57735-760-5234

10


	Data prepare
	Face alignment
	Rebuild folder architecture
	Transforms

	Design model architecture
	Pre-trained ResNet
	Modified ResNet

	Training and select parameters
	Check GPU Memory
	Should I use Adam?
	Epochs and batch-size

	Test and Conclusion
	Expectations

