© 00 N O o~ W0 N =

- o
- o

13

14

15
16

Report of face-recognition by finetuning
ResNet and Haorui-Net

Haorui Li
61518407
Chien-Shiung Wu College

haoruili@seu.edu.cn

Abstract

For face recognition, first, I use MTCNN and face.evoLLVe for automatic data
cleansing and change parameters in MTCNN to avoid dirty data. Then I trained
two models, one is self-modified Resnet called Haorui-Net which use Cov2d
layers in ResNet for fracture extraction and use pooling and softmax layers to
do classifications, another is InceptionResNetV1 with pre-trained weight, and
fine-tuning the model on classmates’ data. During the training process, I compare
several different optimizers and combination of batch and epoch and use the best
one. Finally the best model recognizes 86/104 classmates in 48s and it is Haorui-
Net. At last, when it comes to why my model is better than ResNet, perhaps it is
due to deeper network need more data size and my Haorui-Net is simpler so it can
get its best with small data.

1 Data prepare

1.1 Face alignment

To begin with, I use MTCNN[1] and face.evoLVe.PyTorch for automatic face alignment.

MTCNN propose a deep cascaded multi-task framework which exploits the inherent correlation
between them to boost up Resnet’s performance on face alignment, the architecture is as follows:

Figure 1: MTCNN’s architecture

—_— T — — — — — = —— = — — — s S T — — — — — — — 9
| Conv: 33 Conv: 3x3 Conv: 3x3 'a“- 1 I— Conv: 3x3 Conv: 3x3Cony: 2x2 fully

| MP: 3x3 le_“mumm I | MP- 3x3 MP: 3x3 connect ﬂ face classification
Ix1x2 y
| ‘ bounding box I | i :} boundlng box
rcer;sqmn | ru.zrumon

| inpucsize 5x5x10 3x3x16 1x1x32 ‘“&'ﬂ“ﬂ'd"'m I‘”F’"“"‘ I1x11x28 4x4x48 3x3x64128 U“\-'iﬂ”i"ld"wrk

| 12x12x3 localization | |24x24x3 ocalization
__________ I@L__A__________J____J
[Conv:3x3 Conv:3x3 Conv: _m om0 fully H o
| MP: 3x MP: 3y MP: v_ connect (Uface classification |
| i =] H Hboundlng box regression |
| 0 |
input size 23x23532 10x10x64 Axdx64 Ix3x128 256 H[acial landmark localization
QU i [J

Machine Learning Experiment Report of Face Recognition

17 But I find though MTCNN is very fast, but it sometimes go wrong and bring in dirty data, like the
18 Figure2, and these dirty data will definitely bring catastrophe for model trainning.

Figure 2: Samples of dirty data by MTCNN

5jpg

19 So I turn to face.evoLVe’s face-align tools and finally get good data. This tool can be find at:
20 https://github.com/ZhaoJ9014/face.evoLVe.PyTorch

21 This tool is about 4-times slower than MTCNN, but brings no dirty data.

22 But I am wandering why MTCNN get these wrong results, because it is almost at state-of-the-art.
23 And the face.evoL Ve tool is designed base on MTCNN. So I test several parameters, It shows that
24 when the default minim-window-size is undefined, mtcnn starts from 10x10 and tends to get wrong
25 faces. So after I set the minimum size at 40x40, all results are good.

26 1.2 Rebuild folder architecture

27 For quick detect image labels, I use torchvision.datasets.ImageFolder to automatically read classmates
28 name. To use this function, I rebuild the data folder’s architecture by code.

29 Exactly, I use os.rename and string.split. Following are some codes I use to split the student number:

301 def replaceDirName (rootDir):

312 #Change the folders’ name under rootDir, split the student number by
32 Y. or

333 num = 0

344 dirs = os.listdir(rootDir)

355 for dir in dirs:

366 print (’oldname is:’ + dir)

377 num = num +1

3838 try:

399 temp = dir.split(’_’) [1]

4010 except IndexError:

4111 try:

4212 temp=dir.split (’-’) [1]

4313 except:

4414 print ("This is not Number -Name structure", dir)
45|15 continue

4616 except:

4717 print ("This is not - or _ structure", dir)
4818 continue

4919 print (’new name:’,temp)

500 oldname = os.path.join(rootDir, dir)

5121 newname = os.path.join(rootDir, temp)

522 os.rename (oldname, newname)#replace

523 replaceDirName (’align_data’)

Listing 1: Change folder names for ImageFloder function

s4 After rebuild the folder architecture, torchvision.datasets.ImageFolder is able to automatically read
55 sub-folders’ name as image label.

https://github.com/ZhaoJ9014/face.evoLVe.PyTorch

56

57
58

59
60
61

62
63
64

65

66
67
68

69

70
71

72
73

1.3 Transforms

After clean the data and align all the faces, I made some extra preparations for models robustness and
these work has brought about 3-point increase in test accuracy.

When load in the data I perform some random transforms to the images to improve training. Different
transforms can be attempted and I tried various ones, like Random-Color-Jitter and Random-Rotation,
along with Random-Horizontal-Flip.

Figure 3: Examples of random Color Jitter

Finally I choose all these transforms to improve the model’s robustness. And the random-color-
jitter improves about 2 points in accuracy probably because classmates take photo at different light
environment.

2 Design model architecture

Due to the fact that the data we have is small scale, it will be hard to train a model without over-fitting.
So I think it is recognized to use some pre-trained model and do the fine-tuning. What I have to do is
design the final layers.

2.1 Pre-trained ResNet

The pre-trained weight I download is the Facenet trained by Google. They use triple loss and finally
get 0.997 accuracy at Lwf, the High-Level model structure of Facenet is as follow[2]:

Figure 4: High Level Model Structure of Facenet

Y Triplet

> | DEEP ARCHITECTURE | (L2 |t Loss

MZ-0O0OmMmEM

Batch

And for the first model, I use Inception-ResNet[3] to fine-tuning the model, which is designed for
fine-tuning Facenet. The architecture of Inception-ResNet is as follow:

74

751
76 2
773
78 4
795
80

816

82

83

84

85 1
86 2

Figure 5: Inception-ResNet

3x3 Conv
(256 stride 2 V)
t
3x3 Conv
(192 V)
i
1x1 Conv
(80)
t
3x3 MaxPool
(stride 2 V)
i
3x3 Conv
(64)
t
3x3 Conv
32Vv)
t
3x3 Conv
(32 stride 2 V)
t
Input
(299x299x3)

The code of final layers are:

35x35x256

7Ix71x192

737380

TIXT3x64

147x147x64

1475147432

140x14032

200x2003

self .block8 = Block8(noReLU=True)

self.avgpool_la = nn.AdaptiveAvgPool2d (1)

self .dropout = nn.Dropout (dropout_prob)

self.last_linear = nn.Linear (1792, 512, bias=False)
self.last_bn = nn.BatchNormild (512, eps=0.001, momentum=0.1,

affine=True)
self.logits

nn.Linear (512,

tmp_classes)

Listing 2: Final layer Codes

And I will modified the final layers, then test which model is the best.

2.2 Modified ResNet

From the upper section we can see the final six layers are:

[Block8(

(branchO) :
(conv) :

BasicConv2d(
Conv2d (1792,

192,

kernel_size=(1, 1),

stride=(1, 1), bias

=False)
(bn): BatchNorm2d (192,
track_running_stats=True)
(relu): ReLU()
)
(branchil):
(0):
(conv) :
bias=False)
(bn): BatchNorm2d (192,
track_running_stats=True)
(relu): ReLU()

Sequential (
BasicConv2d (

Conv2d (1792, 192,

)
(1) :

(conv) :

BasicConv2d(

Conv2d (192, 192,

padding=(0, 1), bias=False)
(bn): BatchNorm2d (192,

track_running_stats=True)
(relu): RelLU(Q)

)
(2): BasicConv2d(
(conv): Conv2d (192,
padding=(1, 0),

192,
bias=False)

eps=0.001,

kernel_size=(1,

eps=0.001,

kernel_size=(1,

eps=0.001,

kernel_size=(3,

momentum=0.1,

1),

3))

1)’

momentum=0.1,

momentum=0.1,

affine=True,

stride=(1, 1),

affine=True,

stride=(1, 1),

affine=True,

stride=(1, 1),

11120 (bn): BatchNorm2d (192, eps=0.001, momentum=0.1, affine=True,

112 track_running_stats=True)

11321 (relu): ReLU()

11422)

1153)

11624 (conv2d): Conv2d (384, 1792, kernel_size=(1, 1), stride=(1, 1))
1ns)

1186 AdaptiveAvgPool2d (output_size=1),

1197 Linear (in_features=1792, out_features=512, bias=False),
1208 BatchNorm1d (512, eps=0.001, momentum=0.1, affine=True,
121 track_running_stats=True),

1220 Linear (in_features=512, out_features=8631, bias=True),
1230 Softmax (dim=1)]

Listing 3: Final layers

124 Because earlier layers as containing the base-level information needed to recognize face attributes
125 and base level characteristics, so I want to cut the layers after Conv2d and use some my own code,
126 and just updating the final layers to include another 104 faces.

127 Put all beginning layers in an nn.Sequential:

1281 model_ft = nn.Sequential (xlist(model_ft.children()) [:-5])
Listing 4: Keep the conv2d layers

129 Now, model modified is a torch model but without the final linear, pooling, batchnorm, and sigmoid
130 layers.

131 After this, I design another final layers class includes sample Flatten and Normalize layers in a gesture
132 to use features extracted by Cov2d layers, the codes are:

1331 #Change the final layers as follows
1342 model _modified.avgpool_la = nn.AdaptiveAvgPool2d (output_size=1)

1353 model_modified.last_linear = nn.Sequential(

136 4 Flatten (),

137 5 nn.Linear (in_features=1792, out_features=512, bias=False),
138 6 normalize ()

1397)

1408 model_modified.logits = nn.Linear(layer_list[4].in_features ,104)
1419 model_modified.softmax = nn.Softmax(dim=1)

14210 model_modified = model_modified.to(device)

Listing 5: Haorui Net

143 So the architecture is:

Figure 6: Haorui-Net Architecture

@
g
=3
=
o
L
=
=
2
<<
o
[
L
o

144 We can name it Haorui-Net. In the next section I will train these two models and show some details
145 to pick the winner.

146

147
148

149

150

151
152

153
154

155

156
157

158
159
160

3 Training and select parameters

After design the model, I begin the training step. Tried different epoch, batch size, learning rate and
models.

3.1 Check GPU Memory

The options of batch size are often limited by GPU memory.

On my machine, I have a single Tesla-P-100 with 16280 MiB memory, which means I have more
choice on batch size and epochs.

Use ’Invidia-smi’ I get the following in formations of GPU memeory, it shows that 6869 MiB memory
is located at device and I still have space to test.

Figure 7: 24 Epochs and 64 Batch-size

NVIDIA-SMI 440. 82 Driver Version: 418.67 CUDA Version: 10.1
GPU Name Persistence-M| Bus—Id Disp.A | Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap Memory-Usage GPU-Util Compute M.
+ +

0 Tesla P100-PCIE... Off 00000000:00:04. 0 Off 0
N/A 49C PO 36W / 250W 6869MiB / 16280MiB 0% Default
Processes: GPU Memory
GPU PID Type Process name Usage

3.2 Should I use Adam?

Optimizer plays an important role in deep-learning, and different optimizer can have totally perfor-
mance.

As we all know, "Adam" is honoured as an excellent optimizer, but should I use it too in my work? So I
test another theoretically-good optimizer which is called RMS-prop, and the results in Tensorborad-X
are as follows:

Figure 8: Trainning loss of RMS in TensorboradX

loss

— [z] i un to download CSV JSON

161 It shows that the loss of RMS optimizer finally convergences at about 4.5, and in the preliminary
162 stage it really decreased fast.

163 But with the same epochs and batch-size, which is 32 and 128, the Adam optimizer performs really
164 better:

Figure 9: Trainning loss of Adam in TensorboradX

loss

ra
La

ll
£
|

run to download CSV JSON

165 It shows that the loss of Adam optimizer finally convergences at about 0.2, even though in the
166 preliminary stage it decrease slower than RMS but finally it convergences at a better point.

I also test the FPS of training and testing, but it shows that this two optimizer are almost the same:

fps fps

o download

Name Smoothed Value Step Time Relative
fps_Train 40.05 4579 120 Wed Jun3,22:07:06 4m21s
O fps_valid 189.8 1848 0 Wed Jun 3,22:06:53 4m11s

Name Smoothed Value Step Time Relative

fps_Train 39.33 3648 0 Wed Jun 3,21:34:57 14m 57s
O fps_Valid 194.2 1938 0 Wed Jun 3,21:34:54 14m 57s

Figure 10: FPS of RMS Figure 11: FPS of Adam

167

168 As its shown above, Adam optimizer performs better and I will use it in trainning my model.

169 3.3 [Epochs and batch-size

170 After choose several combinations of epochs and batch size, I get the results as follows on Inception-
171 ResNet:

172
173
174

175
176

177
178

179
180

181
182

184
185

186

187
188

189 1
190 2
1913
192 4
193 5

194

Table 1: Records of combination for ResNet

Epochs Batchsize TP Train FPS

10 16 21 4274
24 16 26 420.7
24 32 41 279.6
24 64 75 153.4
32 64 71 161.5
24 128 80 149.5
32 128 77 233.9
24 256 70 183.3
32 256 77 192.8
64 256 76 155.3

From the chart we can see, more batch size often means better performance, but with more batch size,
sometimes it need more epochs to minimize the loss, just like 256 batch size performs weaker than
128 batch size in 24 epochs, and become better in 32 epochs.

So finally, the ResNet performs its best at 24 epochs, 128 batch size and reaches 82 true positive.
This model was saved as *24-epoch-128bz-VGGFACE2-TESTS80ACC.pb’.

With the chart above, I can giuckly choose some combinations for Haorui-Net, and the results are as
follows:

Table 2: Records of combination for Haorui-Net

Epochs Batchsize TP Train FPS

24 64 71 153.9
24 128 82 171.4
32 128 86 255.5
32 256 77 210.4
64 256 77 195.7

Luckily, the Haorui-Net performs better than ResNet its best at 24 epochs, 128 batch size and reaches
82 true positive. This model was saved as ’32-epoch-128bz-MODIFIED-TEST86ACC.pb’.

So I’'m proud to announce that Haorui-Net becomes the winner in this combination, with ten more
ture-positive!

But what I want to point out is that, Haorui-Net is weaker in the decrease of loss, for ResNet, the
minimum of loss is about 0.27 while training, but for Haorui-Net, the minimum loss is about 3.8, it
probably means ResNet is designed more smarter in track and reduce the loss.

4 Test and Conclusion

Because in the training stage I use Face.L.Ve to process face images, now when test, using this tool
will be slow, so I turn to MTCNN and by change its parameters it seldom detect wrong images.

mtcnn = MTCNN (image_size=160,
margin=0,
min_face_size=60,
thresholds=[0.6,0.7,0.7],
factor=0.709,post_process=True,device=device)

Listing 6: MTCNN Parameter

I load the best model of Haorui-Net and the test of Face-Recognize shows:

195
196

197

198
199

201
202
203

204
205
206
207
208

210

211

212
213
214
215

216
217
218
219

220

Figure 12: Face Recognize Test

1',1%IJ HIEZEah 8.
SR HIEERREZE JL . 0. 8269230769230769
“’~ MNEAR A BB THA E: 48 s

It takes about 0.46 second per student for face recognize and the accuracy is 82.7% for the best model
of "Haorui Net", not so bad.

But this result is slower than ResNet:

Figure 13: Face Recognize Test
ul',i?:ulJ FIHEEELL R
}\ PR B e SL 0. 7884615384615384
A NSRRI BE TR E: 38 s

For Face-Verification, I find that it takes too long to run the function because it have to check all the
faces, so I just check the first 40 faces and get the results below:

Figure 14: Face Verification Test
INRINTR B =5
¥5H: 0.875
[ml 9% 0.875
51 0.9987864077669902
F1{H: 0.875

In conclusion, I test the Resnet and hand-modified Haorui-Net, all based on pretrained weights,
finally Haorui-Net win the competition in accuracy. I use Adam optimizer because it performs best in
minimising loss. For the best model, it takes about 0.46 second per student for face recognize and the
accuracy is 82.7 %.

Why my model can performers better than this champion model? (though the resnet model in paper
get 99.5% accuracy and only 76% in my work) I think perhaps it because our database is small and
only need to classify 104 people, when the neuronal network is more and more deep, it needs more
data to get its best accuracy, and my Haorui-Net is simpler, which means with small data it is more
easy to be trained at its best. Last but not least, the gap between these two model is small, with more
experiment of combination of epochs and batchsize, perhaps ResNet can give better results.

S Expectations

Though my model get a good result in accuracy, but there still remains something I want to explore.

For example, my face-verification function runs too slow to verified all pictures and names, I think it
perhaps due to my algorithm is O(n?) and I write too many works to move data between GPU and
CPU which is time-consuming. And I think perhaps use B+ tree or some other data structure can
speed up the searching process, also, keep all the data on one device can avoid moving them.

Moreover, though my model works great on our classmate-dataset, but for actual industrial demand,
sometimes the faces in picture is really small, slant, and only have side faces, like surveillance videos.
To recognize faces in these scenes, perhaps we have to made a 3D-model for faces[4], and use more
skills to avoid overfitting like knowledge-distillation.[5]

In conclusion, there are still large space to modify this work for specific context.

221

222
223

224
225
226

227
228
229

230
231

232
233
234

References

[1] Zhang, K., Zhang, Z., Li, Z. Qiao, Y. (2016). Joint Face Detection and Alignment using Multi-task Cascaded
Convolutional Networks.. CoRR, abs/1604.02878.

[2]Schroff, F., Kalenichenko, D. Philbin, J. (2015). FaceNet: A Unified Embedding for Face Recognition and
Clustering (cite arxiv:1503.03832Comment: Also published, in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition 2015)

[3]Szegedy, C., loffe, S., Vanhoucke, V. Alemi, A. A. (2017). Inception-v4, Inception-ResNet and the Impact of
Residual Connections on Learning. Proceedings of the 31st AAAI Conference on Artificial Intelligence (p./pp.
4278-4284), : AAAI Press.

[4]Dou, P., Zhang, L., Wu, Y., Shah, S. K. Kakadiaris, I. A. (2015). Pose-robust face signature for multi-view
face recognition.. BTAS (p./pp. 1-8), : IEEE. ISBN: 978-1-4799-8776-4

[5]Luo, P., Zhu, Z., Liu, Z., Wang, X. Tang, X. (2016). Face Model Compression by Distilling Knowledge
from Neurons.. In D. Schuurmans M. P. Wellman (eds.), AAAI (p./pp. 3560-3566), : AAAI Press. ISBN:
978-1-57735-760-5

10

	Data prepare
	Face alignment
	Rebuild folder architecture
	Transforms

	Design model architecture
	Pre-trained ResNet
	Modified ResNet

	Training and select parameters
	Check GPU Memory
	Should I use Adam?
	Epochs and batch-size

	Test and Conclusion
	Expectations

